Bernstein's Lethargy Theorem in Fréchet spaces

نویسندگان

  • Asuman Güven Aksoy
  • Grzegorz Lewicki
چکیده

In this paper we consider Bernstein’s Lethargy Theorem (BLT) in the context of Fréchet spaces. Let X be an infinite-dimensional Fréchet space and let V = {Vn} be a nested sequence of subspaces of X such that Vn ⊆ Vn+1 for any n ∈ N and X = ⋃∞ n=1 Vn. Let en be a decreasing sequence of positive numbers tending to 0. Under an additional natural condition on sup{dist(x, Vn)}, we prove that there exists x ∈ X and no ∈ N such that en 3 ≤ dist(x, Vn) ≤ 3en for any n ≥ no. By using the above theorem, we prove both Shapiro’s [19] and Tyuremskikh’s [22] theorems for Fréchet spaces. Considering rapidly decreasing sequences, other versions of the BLT theorem in Fréchet spaces will be discussed. We also give a theorem improving Konyagin’s [9] result for Banach spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariance of Fréchet frames under perturbation

Motivating the perturbations of frames in Hilbert and Banach spaces, in this paper we introduce the invariance of Fr'echet frames under perturbation. Also we show that for any Fr'echet spaces, there is a Fr'echet frame and any element in these spaces  has a series expansion.

متن کامل

A Floquet-Liapunov theorem in Fréchet spaces

Based on [4], we prove a variation of the theorem in title, for equations with periodic coefficients, in Fréchet spaces. The main result gives equivalent conditions ensuring the reduction of such an equation to one with constant coefficient. In the particular case of C ∞ , we obtain the exact analogue of the classical theorem. Our approach essentially uses the fact that a Fréchet space is the l...

متن کامل

A Fixed Point Theorem for a Class of Differentiable Stable Operators in Banach Spaces

We study Fréchet differentiable stable operators in real Banach spaces. We present the theory of linear and nonlinear stable operators in a systematic way and prove solvability theorems for operator equations with differentiable expanding operators. In addition, some relations to the theory of monotone operators in Hilbert spaces are discussed. Using the obtained solvability results, we formula...

متن کامل

An inverse function theorem in Fréchet spaces

I present an inverse function theorem for differentiable maps between Fréchet spaces which contains the classical theorem of Nash and Moser as a particular case. In contrast to the latter, the proof does not rely on the Newton iteration procedure, but on Lebesgue’s dominated convergence theorem and Ekeland’s variational principle. As a consequence, the assumptions are substantially weakened: th...

متن کامل

Characterization of splitting for Fréchet-Hilbert spaces via interpolation

Based on the methods from interpolation theory we give a characterization of pairs (E,F ) of Fréchet-Hilbert spaces so that for each Fréchet-Hilbert space G each short exact sequence 0 −→ F −→ G −→ E −→ 0 splits. This characterization essentially depends on a key condition (S) of an interpolation nature. An equivalent description of (S) in terms of appropriate families of interpolation function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 209  شماره 

صفحات  -

تاریخ انتشار 2016